

TOPOLOGICAL ANOMALIES

meets

GRAPH COMPLEX HOMOLOGY

presented on A POSTER FULL OF FORMULAS based on original research by PAUL-HERMANN BALDUF and SIMONE HU at the Mathematical Institute of the UNIVERSITY OF OXFORD and reported in ARXIV 2503.09558.

Propagator in topological QFT

Position space

• *n*-dimensional topological QFT, position space $\vec{x} = (x^{(1)}, \dots, x^{(n)})^{\mathsf{T}}$, with field differential operator = de Rham operator

$$d = dx^{(1)} \partial_{x^{(1)}} + dx^{(2)} \partial_{x^{(2)}} + \ldots + dx^{(n)} \partial_{x^{(n)}}.$$

 Propagator is Green function of d, defined by $\mathrm{d}P_n(\vec{x}) = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \, \delta^n(\vec{x}) \, \mathrm{d}x_1 \wedge \ldots \wedge \, \mathrm{d}x_n.$ It is

$$P_n(\vec{x}) = \frac{\Omega_n}{|\vec{x}|^n} = \frac{\sum_{j=1}^n (-1)^j x^{(j)} dx^{(1)} \wedge \widehat{dx^{(j)}} \wedge dx^{(n)}}{\sqrt{\vec{x} \cdot \vec{x}}^n}.$$

 Ω_n is the projective n-dimensional volume form

• Examples: $P_1 = \frac{x}{|x|} = \operatorname{sgn}(x),$

$$P_{2} = \frac{x^{(2)} dx^{(1)} - x^{(1)} dx^{(2)}}{x^{(1)^{2}} + x^{(2)^{2}}} = \frac{r^{2} \sin^{2} \varphi d\varphi + r^{2} \cos^{2} \varphi d\varphi}{r^{2}} = d\varphi.$$
• Notice that the integrand factorizes:

Parametric space

Recall integral repr. of Euler gamma function,

$$\frac{1}{|\vec{x}|^n} = \frac{1}{\Gamma(\frac{n}{2})} \int_0^\infty \frac{1}{a^{\frac{n}{2}+1}} e^{-\frac{\vec{x}^2}{a}} da.$$

• For each component $x^{(j)}$ introduce $s^{(j)} := \frac{x^{(j)}}{\sqrt{a}}$. Then $ds^{(j)} = \frac{dx^{(j)}}{a^{\frac{1}{2}}} - \frac{x^{(j)}}{2a^{\frac{3}{2}}} da$ [GKW25; Bud+23]. Wedge product:

$$ds^{(1)} \wedge \ldots \wedge ds^{(n)} = \frac{dx^{(1)} \wedge \ldots \wedge dx^{(n)}}{a^{\frac{n}{2}}} + \frac{da \wedge \Omega_n}{2a^{\frac{n}{2}+1}}.$$

• If one integrates a, the first term vanishes and

$$\int_0^\infty e^{-\vec{s}^2} ds^{(1)} \wedge \ldots \wedge ds^{(n)} = \frac{\Gamma(\frac{n}{2})}{2} \frac{\Omega_n}{(\vec{x}^2)^{\frac{n}{2}}} = \frac{\Gamma(\frac{n}{2})}{2} P_n(\vec{x}).$$

Each of the n directions contributes $e^{s^{(j)^2}} ds^{(j)}$.

Parametric integrals for anomalies: The topological form

• BRST formalism: Differential Q, gauge-invariant "physical" observables A are 0^{th} homology group. That is,

$$QA = 0$$
 and $\nexists B : A = QB$.

• A classically gauge invariant observable might violate gauge invariance at quantum level ("anomaly"). Work in perturbation theory, let \mathcal{O}_i be local operators. Define bracket [GKW25]

$$\{\mathcal{O}_1,\ldots,\mathcal{O}_k\}\coloneqq Q\left(\int_{\mathbb{D}^{n(k-1)}}\mathcal{O}_1\cdots\mathcal{O}_k\right).$$

• The integral is a sum over Feynman integrals with k vertices in the n-dimensional TQFT,

$$\{\mathcal{O}_1,\mathcal{O}_2,\ldots\}\coloneqq Q\left(\int_{\mathbb{R}^{n(k-1)}}\mathcal{O}_1\cdots\mathcal{O}_k\right)=\sum_{\text{Graphs }G}\frac{1}{|\text{Aut}(G)|}I_G\prod_{v\in V_G}\prod_i\varphi_{i,v}.$$
 External leg structure symmetry factor Feynman integral

• Parametric integrand factorizes along dimension \Rightarrow consider 1-dimensional integrand α_G . Schwinger parameter a_e for each edge. Coordinates $x_e^{\pm} \in \mathbb{R}$. Then $I_G = \int \alpha_G \wedge \alpha_G \wedge \ldots$ with the **topological form**

$$\alpha_G \coloneqq \frac{1}{\pi^{\frac{|E_G|}{2}}} \int \cdots \int \bigwedge_{e \in E_G} e^{-s_e^2} \, \mathrm{d}s_e$$
 (differential form of degree ℓ), where $s_e := \frac{x_e^+ - x_e^-}{\sqrt{a_e}}$.

• Key results of [BG25]: Topological form is given by graph matrices and Dodgson polynomials

$$\alpha_G = \frac{1}{\pi^{\frac{\ell}{2}} 4^{\ell} \left(\frac{\ell}{2}\right)! \; \psi_G^{\frac{\ell+1}{2}}} \sum_{\substack{\text{spanning} \\ \text{tree}}} \det \left(\mathbb{I}[T] \right) \left(\sum_{\sigma \in \mathfrak{S}_{\overline{T}}} \psi_G^{\sigma(f_1), \sigma(f_2)} \cdots \psi_G^{\sigma(f_{\ell-1}), \sigma(f_{\ell})} \right) \bigwedge_{f \not \in T} \, \mathrm{d}a_f,$$

and $\alpha_G \wedge \alpha_G = 0$ for all graphs (Kontsevich Formality theorem).

Kontsevich formality theorem

• Given is a classical field theory: Field variable $\phi(t,x)$, canonical conjugate $\pi(t,x)$. Hamilton function $H(\phi(t,x),\pi(t,x))$. Poisson bracket $\{f,g\}\in C^{\infty}$. Equations of motion:

$$\partial_t \phi = \{\phi, H\}, \quad \partial_t \pi = \{\pi, H\}, \quad \{\phi, \pi\} = 1.$$

Deformation quantisation: Find star product *

s.t.
$$[f,g]_\star := f\star g - g\star f \stackrel{!}{=} \hbar\left\{f,g\right\} + \mathcal{O}\left(\hbar^2\right)$$
 .

Should be associative $f \star (g \star h) = (f \star g) \star h$.

• Power series ansatz, differential operators $B_i(f,g)$.

$$f \star g = B_0(f,g) + \hbar B_1(f,g) + \hbar^2 B_2(f,g) + \dots,$$

 $B_0(f,g)=f\cdot g$ and $B_1(f,g)=rac{1}{2}\left\{f,g
ight\}$ Solution in [Kon03]: Graphs Γ embedded in the upper half plane $\{z \in \mathbb{C} | \Im(z) > 0\}.$

• Angle $\varphi(p,q)$ between geodesic $p \longrightarrow q$ and vertical line $p \longrightarrow i\infty$. Each graph is weighted by an integral $W_G = \text{const} \times \int \bigwedge_{e \in E_G} d\varphi_e$. Star product is

$$\star = \cdot + \sum_{n=1}^{\infty} \hbar^n \sum_{G} W_G B_G.$$

the boundary:
$$c_G:=\int_{\mathbb{R}^{2(|V|-1)}}\bigwedge_e\,\mathrm{d}\varphi_e=\int_{\mathbb{R}^{2(|V|-1)}}\int_{\sigma_G}e^{\vec{s}^2}\bigwedge_e\,\mathrm{d}s_e^{(1)}\,\mathrm{d}s_e^{(2)}$$

• To prove associativity, show vanishing of terms at

• Solving position integrals yields $c_G = \int_{\sigma_G} \alpha_{\Gamma} \wedge \alpha_{\Gamma}$. So $\alpha_G \wedge \alpha_G = 0$ implies associativity of \star .

• Easy proof with $\alpha_G = \phi_G$: $\operatorname{Pf}(A)^2 = \det(A)$, so

$$\phi_{G} \wedge \phi_{G} \propto \frac{\left(\operatorname{Pf}\left(\operatorname{d}\Lambda\Lambda^{-1}\operatorname{d}\Lambda\right)\right)^{2}}{\det\Lambda} = \det\left(\Lambda^{-1}\right)\det\left(\operatorname{d}\Lambda\Lambda^{-1}\operatorname{d}\Lambda\right)$$

$$= \det\left(\Lambda^{-1}\operatorname{d}\Lambda\Lambda^{-1}\operatorname{d}\Lambda\right) = \det\left(\left(\Lambda^{-1}\operatorname{d}\Lambda\right)^{2}\right)$$

$$=: \det\left(M\right) = \frac{1}{(\ell/2)!}B_{n}\left(s_{1}, s_{2}, \ldots\right),$$

where B_n are Bell polynomials and s_i are given by canonical forms (only $\beta^{4k+1} \neq 0$ due to cyclicity of trace and symmetry of Λ):

$$s_j = -\frac{(j-1)!}{2} \operatorname{tr} (M^j) = -\frac{(j-1)!}{2} \operatorname{tr} ((\Lambda^{-1} d\Lambda)^{2j})$$
$$= -\frac{(j-1)!}{2} \beta_G^{2j} = 0 \quad \forall j \quad \Rightarrow \phi_G \wedge \phi_G = 0.$$

"The topological form is the Pfaffian form"

Let \mathcal{C} be any choice of cycle incidence matrix and \mathcal{P} any choice of path matrix, then $\det(\mathcal{C} \mid \mathcal{P}) \in \{+1, -1\}$ and

"Topological form"
$$\longrightarrow \alpha_G = \frac{\det\left(\mathcal{C} \,|\, \mathcal{P}\right)}{2^\ell} \,\,\phi_G \,\,\leftarrow$$
 "Pfaffian form"

Wait, what is a Pfaffian?

• Let M be a $2n \times 2n$ skew-symmetric matrix with commuting entries. The Pfaffian is

$$Pf(M) = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot M_{\sigma(1), \sigma(2)} \cdots M_{\sigma(2n-1), \sigma(2n)}.$$

• If a skew-symmetric M has odd dimensions, set Pf(M) = 0. Then $Pf(M)^2 = det(M)$ for all skew-symmetric matrices.

$$\operatorname{Pf}\begin{pmatrix}0&b\\-b&0\end{pmatrix} = b$$

$$Pf \begin{pmatrix} 0 & b & c & d \\ -b & 0 & g & h \\ -c & -g & 0 & l \\ -d & -h & -l & 0 \end{pmatrix} = bl - ch + dg.$$

Consequences

Topological form

- Immediate algebraic properties i.e. convergence
- Explicit, easily computable formula for all ℓ
- Quadratic relations coming from Stokes' relations:

 $\delta I_G + \frac{1}{2}[I_G, \mathfrak{m}] = 0, \quad I_G = \langle G, \mathfrak{m} \rangle$ Equivalent to Maurer-Cartan equation for \mathfrak{m} , a

sum over even-looped multiedges (dipoles).

Pfaffian form

- Interpretation of ϕ_G as parametric integrand corresponding to single topological dimension of integrals computing violations of BRST-closedness.
- $\phi_G \wedge \phi_G = 0$ gives simpler proof and generalizes Kontsevich's formality result
- Position space representation of $I_G = \int_{\sigma_G} \phi_G$

Dunce's cap G is a graph on 3 vertices and 4 edges,

Proof ingredients: Graph matrices

with $\ell = 2$ loops.

Let E_G be set of edges, V_G set of vertices. Leave out one vertex v_{\star} (physics interpretation: Fix at the origin) Loop number $\ell = |E_G| - (|V_G| + 1)$. Assign one Schwinger parameter a_e to each edge e.

$$\mathcal{D} = egin{pmatrix} a_1 & 0 & 0 & 0 \ 0 & a_2 & 0 & 0 \ 0 & 0 & a_3 & 0 \ 0 & 0 & 0 & a_4 \end{pmatrix}, \qquad \mathbb{I} = egin{pmatrix} a_1 & 0 & 0 & 0 \ 0 & 0 & a_3 & 0 \ 0 & 0 & 0 & a_4 \end{pmatrix}$$

$$\begin{pmatrix}
0\\0\\-1\\1
\end{pmatrix}, \qquad \mathcal{P} = \begin{pmatrix}
1&0\\0&0\\-1&0\\0&-1
\end{pmatrix}$$
cidence paths v to v

• Laplacians: $\mathcal{L} = \mathbb{I}^{\intercal} \mathcal{D}^{-1} \mathbb{I} = \begin{pmatrix} \frac{1}{a_1} + \frac{1}{a_2} & -\frac{1}{a_1} \\ -\frac{1}{a_1} & \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_4} \end{pmatrix}, \qquad \Lambda = \mathcal{C}^{\intercal} \mathcal{D} \mathcal{C} = \begin{pmatrix} a_1 + a_2 + a_3 & a_3 \\ a_3 & a_3 + a_4 \end{pmatrix}.$

• Symanzik polynomial: $\psi_G = \det \Lambda = \det \mathcal{L} \cdot \prod a_e = a_3 a_4 + a_1 (a_3 + a_4) + a_2 (a_3 + a_4).$

• Matrix tree theorem: The monomials of ψ are the complements of spanning trees, $\psi = \sum \prod a_e$.

Expanded vertex Laplacian:

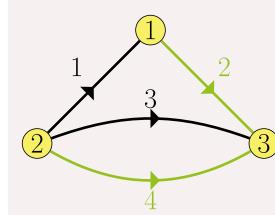
$$\mathbf{M} := \begin{pmatrix} \mathcal{D} & \mathbb{I} \\ -\mathbb{I}^T & 0 \end{pmatrix} = \begin{pmatrix} a_1 & 0 & 0 & 0 & 1 & -1 \\ 0 & a_2 & 0 & 0 & 1 & 0 \\ 0 & 0 & a_3 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_4 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \end{pmatrix}$$

In M, the first 4 rows and columns refer to edges, the last 2 rows and columns refer to vertices v_1, v_2 . Dodgson Polynomials: Minors of M. Example:

$$\psi^{v_1,v_1} = \det \begin{pmatrix} a_1 & 0 & 0 & 0 & -1 \\ 0 & a_2 & 0 & 0 & 0 \\ 0 & 0 & a_3 & 0 & 1 \\ 0 & 0 & 0 & a_4 & 1 \\ 1 & 0 & -1 & -1 & 0 \end{pmatrix} = a_2 (a_1 a_3 + a_1 a_4 + a_3 a_4),$$

 $\psi^{v_1,v_2} = -a_2 a_3 a_4 = \psi^{v_2,v_1}, \qquad \psi^{v_2,v_2} = (a_1 + a_2) a_3 a_4.$ They satisfy numerous identities.

Example: Topological/Pfaffian form for the Dunce's cap



G has five spanning trees T. For example, consider $T = \{2, 4\}$. Then $E \setminus T = \{f_1, f_2\} = \{1, 3\}$ and $\mathbb{I}[T] = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\psi^{1,3} = -a_4$.

Contribution of
$$T$$
:
$$\frac{(+1)}{16\pi(a_1a_3 + a_2a_3 + a_1a_4 + a_2a_4 + a_3a_4)^{3/2}} \cdot (-2a_4) da_1 \wedge da_1$$

$$\Lambda^{-1} = \frac{1}{\psi_G} \begin{pmatrix} a_3 + a_4 & -a_3 \\ -a_3 & a_1 + a_2 + a_3 \end{pmatrix} \quad \text{and} \quad \mathrm{d}\Lambda = \begin{pmatrix} \mathrm{d}a_1 + \mathrm{d}a_2 + \mathrm{d}a_3 & \mathrm{d}a_3 \\ \mathrm{d}a_3 & \mathrm{d}a_3 + \mathrm{d}a_4 \end{pmatrix} \qquad \text{gives} \quad \phi_G = 4\alpha_G.$$

Commutative graph complexes

The **odd graph complex** GC_3 is a quotient of a \mathbb{Q} -vector space spanned by *oriented* graphs (G, o) [Kon93]

$$\mathsf{GC}_3 \coloneqq \bigoplus_{(G,o)} \mathbb{Q}(G,o)/\sim$$
, where the orientation $o \in \det \mathbb{Z}^{V_G} \otimes \bigotimes_{e \in E_G} \det \mathbb{Z}^{H(e)} \cong \mathbb{Z}$

and G is connected with vertex valencies ≥ 3 . An orientation o is given by (vertex ordering + edge directions), or equivalently (cycle basis + edge ordering) [CV03]. GC₃ is bigraded by loop number ℓ and $k := \deg(G) = |E_G| - 3\ell$

• The relations are: modulo isomorphisms $f: G \cong G'$ by $(G,o)\stackrel{(1)}{\sim}(G',f_*(o))$ and modulo orientation flips $(G,o)\stackrel{(2)}{\sim} -(G,-o)$. This implies that all graphs with tadpoles (or other *odd* automorphisms) vanish:

$$\stackrel{(1)}{=} \quad \stackrel{(2)}{=} \quad - \quad \stackrel{(2)}{=}$$

• Multi edges do not vanish automatically, but graph which are only multi edges with even number of edges (=odd number of loops) vanish:

• Let G/γ denote contraction of subgraph $\gamma \subset G$ to a vertex. Define the boundary operator

$$\partial(G, o) = \sum_{e \in E_G} (G, o)/e.$$

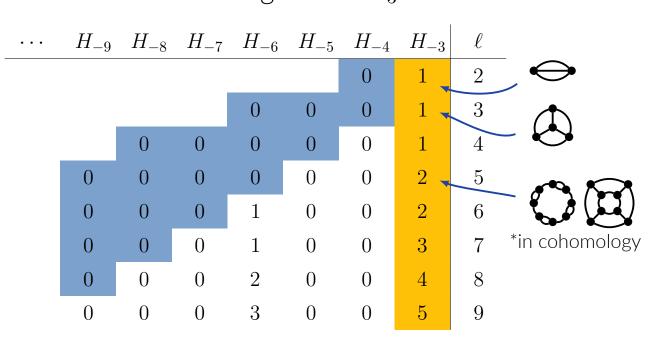
Example: All even-loop multiedges are closed.

Graph homology is

$$H_{\bullet}(\mathsf{GC}_3) = \frac{\ker \partial}{\operatorname{im} \partial} = \bigoplus_{\ell, k} \operatorname{gr}_{\ell} H_k(\mathsf{GC}_3)$$

- Homologies are known up to $\ell \approx 11$ [Wil25]. One finds only few classes, but for $\ell \to \infty$, their dimension grows super-exponentially [BZ24].
- H^{-3} related to "algebra of 3-graphs" [DKC98] and thus Vassiliev invariants in knot theory [Vog11].

Homologies of GC₃:



The even graph complex GC_2 is defined similarly but with orientation $o \in \deg \mathbb{Z}^{E_G}$ given by an edge ordering and with degree $k = |E_G| - 2\ell$. Now multiedges vanish and tadpoles do not.

Orientation integrals on the odd graph complex: The Pfaffian form

• Connected graph with loop number ℓ , and differential wrt Schwinger parameters

$$\Lambda := \mathcal{C}^{\mathsf{T}} \mathcal{D} \mathcal{C}, \qquad \mathrm{d} \Lambda = \mathrm{d} \left(\mathcal{C}^{\mathsf{T}} \mathcal{D} \mathcal{C} \right) = \mathcal{C}^{\mathsf{T}} \, \mathrm{d} \mathcal{D} \mathcal{C}.$$

 Λ is a symmetric $\ell imes\ell$ matrix (and positive-definite) and $\mathrm{d}\Lambda\cdot\Lambda^{-1}\cdot\mathrm{d}\Lambda$ is skew-symmetric when ℓ is even.

• The **Pfaffian form** ϕ_G [BHP24] and the *primitive* canonical forms β_G^{4k+1} [Bro21] are defined as

$$\phi_G = := \frac{1}{(-2\pi)^{\ell/2}} \frac{\operatorname{Pf}\left(\operatorname{d}\Lambda \cdot \Lambda^{-1} \cdot \operatorname{d}\Lambda\right)}{\sqrt{\det \Lambda}} \quad \text{and} \quad \beta_G^{4k+1} := \operatorname{tr}\left((\Lambda^{-1}\operatorname{d}\Lambda)^{4k+1}\right), \text{ for } k \ge 1.$$

Note $\beta_X^n = 0$ for symmetric matrices X if $n \neq 4k + 1$.

• Change of cycle basis C' = CP with constant matrix $P \in GL_{\ell}(\mathbb{Z})$:

$$\phi_{\Lambda'} = \phi_{\Lambda} \cdot \det P = \pm \phi_{\Lambda}$$

$$\beta_{\Lambda'}^{4k+1} = \beta_{\Lambda}^{4k+1} \qquad \Leftarrow \qquad \frac{\mathrm{d}\Lambda'\Lambda'^{-1}\,\mathrm{d}\Lambda' = P^{\mathsf{T}}\left(\,\mathrm{d}\Lambda\Lambda^{-1}\,\mathrm{d}\Lambda\right)P, \ \Lambda'^{-1}\,\mathrm{d}\Lambda' = P^{-1}(\Lambda^{-1}\,\mathrm{d}\Lambda)P}{\mathrm{known:} \ \mathrm{Pf}(A^{\mathsf{T}}BA) = \det A\,\mathrm{Pf}(B), \quad \mathrm{trace is cyclic}}$$

Any wedge product of these forms, **orientation forms** $\phi \wedge \omega$, changes sign by det P under changes of basis.

- Closed forms: $d\phi = 0$ and $d\beta^{4k+1} = 0$, and generate a Hopf algebra of forms where β are primitive.
- Integral over simplex $\sigma_G = \{[a_1 : \ldots : a_{|E_G|}], a_e > 0\} \in \mathbb{P}(\mathbb{R}_+^{|E_G|})$ is always finite and satisfies Stokes' relation

$$I_G(\omega) = \int_{\sigma_G} \phi_G \wedge \omega_G, \quad \delta I(\omega) + [I(\omega), \mathfrak{m}] + \frac{1}{2} \sum_{(\omega)} (-1)^{|\omega'|} [I(\omega''), I(\omega')] = 0$$

where \mathfrak{m} is a sum over even-looped multiedges (dipoles), weighted by automorphism factors.

- These are well-defined on GC_3 ; under cocycle conditions, is an integration pairing that computes homology!
- Generalized Feynman integrals: $\int_{\tau} \phi_G \wedge \omega_G = \int_{\tau} \frac{Q(a_e)}{\sqrt{\ell+1/2}} \, \Omega_{|E_G|} \quad \text{where } Q(a_e) \text{ is a polynomial.}$

Why are integrals detecting homology?

- Let G be some (linear combination of) graphs such that $\partial G = 0$, i.e. checked by explicit computation. Hard part: Does there $\exists F$ such that $\partial F = G$?
- Stokes' theorem: Let $\int_F = \int_{\sigma_F}$ and $d\omega = 0$,

$$0 = \int_{F} d\omega = \int_{\partial F} \omega = \int_{G} \omega, \quad \text{if } \partial F = G.$$

• Thus if $\int \omega \neq 0$ one knows that $G \neq \partial F$.

That is, G is not exact, and since $\partial G = 0$, this G defines a homology class in the even/odd graph complex (depending on ω).

References

Paul-Hermann Balduf and Davide Gaiotto. "Combinatorial Proof of a Non-Renormalization Theorem". In: Journal of High Energy Physics 2025.5 (2025), p. 120. Michael Borinsky and Don Zagier. "On the Euler Characteristic of the Commutative Graph Complex and the Top Weight Cohomology of \mathcal{M}_q ". In: arXiv:2405.04190 [math.AT] Francis Brown. "Invariant Differential Forms on Complexes of Graphs and Feynman Integrals". In: SIGMA 17 (2021), p. 103. Francis Brown, Simone Hu, and Erik Panzer. Unstable Cohomology of $GL_{2n}(\mathbb{Z})$ and the Odd

Commutative Graph Complex. 2024. Kasia Budzik et al. "Feynman Diagrams in Four-Dimensional Holomorphic Theories and the Operatope". In: Journal of High Energy Physics 2023.7 (2023), p. 127. James Conant and Karen Vogtmann. "On a Theorem of Kontsevich". In: Algebraic & Geometric Topology 3.2 (2003), pp. 1167-1224.

S. V. Duzhin, A. I. Kaishev, and S. V. Chmutov. "The Algebra of 3-Graphs". In: Труды Математического института имени В.А. Стеклова (Tr. Mat. Inst. Steklova) 221 (1998), GKW25 Davide Gaiotto, Justin Kulp, and Jingxiang Wu. "Higher Operations in Perturbation Theory". In: Journal of High Energy Physics 2025.5 (2025), p. 230.

Maxim Kontsevich. "Deformation Quantization of Poisson Manifolds, I". In: Letters in Mathematical Physics 66.3 (2003), pp. 157–216. Maxim Kontsevich. "Formal (Non)-Commutative Symplectic Geometry". In: The Gelfand Mathematical Seminars, 1990-1992. Ed. by Israel M. Gelfand, Lawrence Corwin, and James Lepowsky. Boston, MA: Birkhäuser, 1993, pp. 173-187. Pierre Vogel. "Algebraic Structures on Modules of Diagrams". In: Journal of Pure and Ap-

plied Algebra 215.6 (2011), pp. 1292–1339. Thomas Willwacher. The 11-loop graph cohomology. preprint. 2025.